Industrial Technology Vision 2020 Old and New Issues Call for Transformation Ministry of Economy, Trade and Industry

Directionality of Industrial Technology for 2025 and 2050

Global Mega-trend for 2050

1 Population Peak-out 2 SDGs, Circular Economy 3 Digital Economy 4 Geopolitical Risk 5 Resilience

True Nature of the Problem (Country approaches)

- US and China transform their economies to intellectual capitalism. Europe proposes a new value.
- Japan faces great difficulty in coping with the rapidity of global change and technological progress due to both inherent and self-constructed restraints.
- The Covid-19 crisis reveals what must be done: the extreme hardship should be used as an opportunity for positive change.

Directionality

Toward Society 5.0 (for 2050)

Shift to Intellectual Capitalism Economy × Sustainable Global Commons + Digital Technology, Japanese Superiority

Basic Philosophy (for 2025) [Slide 2]

Layer 1 [Basis] Release of Individual

① Startup Ecosystem ② Human Resource Fluidity, Appointment of High-skill Foreign Human Resources ③ Revolution of Education

Layer 2 [Breakaway from Technocentrism] R&D, Business Strategy to Seek Competitiveness from Seed Technology

① R&D toward Layer Master ② Reinforcement of Global Niche Top ③ Risk Management, Portfolio to Uncertainty

Layer 3 [Resource Concentration] R&D Investment to Important Fields

(A) digital, (B) bio, (C) material, (D) energy, environment

Reinforcement of R&D on next-generation computing technology (bases for all) and key technology for Intelligence of Things [Slide 3]

Prevention of the infectious spread of Covid-19 is most important. It requires medium & long term prediction of world change and design of where Japan plays a roll. This vision will be revised as needed.

Basic Philosophy for 2025

Digital

Material

Energy &

Environment

Bio

Layer 3

R&D Investment to Important Fields

(A) Digital [slide 3]

- (B) Bio
- (C) Material
- (D) Energy, Environment

Layer 2

R&D, Business Strategy to Seek Competitiveness from Seed Technology

- ① R&D toward Layer Master
- ② Reinforcement of Global Niche Top in Manufacturing, etc.
- 3 Risk Management, Portfolio to Uncertainty

Layer 1

Reinforcement of Innovative Power by Release of the Individual

- ① Formation of Startup Ecosystem (Short Term)
- 2 Human Resource Fluidity, Appointment of High-skill Foreign Human Resource (Short & Medium Term)
- 3 Revolution of the Education (Medium & Long Term)

Breakaway from Technicism

Resource Concentration

Basis

- Talent Carrying and Supporting Innovation
- Ecosystem

Next-generation Computing Tech. & Tech. for Intelligence of Things

Next-generation computing technology is the basis for all digital technologies. Computation speed, energy efficiency and miniaturization are important. R&D focused on the developing period & market size of future products should be promoted for 2025.

Energy Network

Online Learning

Expansion of Human Being Ability

Autonomous Driving

Robotics

Telemedicine Remote Working

Machine Translation

Smart Factory Brain Machine Interface

Smart Logistics

Intelligence of Things

Data Reliability and Utilization

Edge Computing Next-generation Sensing

Neumann Computing (die shrink, specification, etc.)

Non-Neumann Computing (neuromorphic, quantum, etc.)

Heterogeneous Computing
High Performance Computing

Next-generation Computing

Next-generation Communication (5G/beyond 5G)
Optical Communication, processing (photonics)

Digital Infrastructure

Mega-trend

- ① Increasing Demands for Digitalization
- ② Explosive Increase of Information Communication and Data Processing
- ③ Requirement to Save the Energy and Space
- 4 Globalization of Market and Supply Chain
- ⑤ Interest in Disaster Prevention and Security

Important Point of R&D

- Transformation from production or sales business to stock business or platform business with data acquisition & analysis, maintenance service, and version up service, etc.
- Reliability of Japanese companies on accuracy and handling of the data
- Superiority with a material, production and testing apparatus even if mass production in Japan is difficult
- New technology such as spintronics, silicon photonics, quantum computer working in normal temperature, bio sensor
- System design, software, architecture